

Missione 4 Istruzione e Ricerca

The Responsiveness Scores Model for Impact Driver Analysis

Antonio Zinilli, Simona Tarra, and Giovanni Cerulli, CNR-IRCrES

Introduction

- **Risk mapping** of climate change effect on land use is a central task of **NEUTRALIZE** project
- In WP3 "Statistical analysis and indicators", CNR-IRCRES wants to contribute by adopting a statistical methodology for building resilience indicators called Responsiveness Scores (RSs)
- Using RSs, we are able to **map resilience** of a target variable y on a series of determinants **x** of y using an *iterated random-coefficient regression*

What we want to do?

- The AGRITALIM provides different datasets on the basis of different climate scenarios
- For each scenario (i.e., dataset) we run a **Responsiveness Scores (RSs)** model to analyze the **resilience** of farms with respect to specific outcome (Ys) determined by specific drivers (Xs)
- We study the change in the RSs within the different scenarios

$$\longrightarrow \mathbf{Y}_i = \mathbf{f}(\mathbf{X}_i)$$

i = Region / Altimetry Agricultural sector

What RSs are?

Responsiveness Scores measure the change of a given outcome y when a given factor x_j changes, conditional on all other factors \mathbf{x}_{-j} .

It is the *derivative* of y on x_j , given \mathbf{x}_{-j} (*regression coefficient*), but allowing each observation to get its own **responsiveness score** (*random coefficient regression*).

RSCORES: definition and estimation

Responsiveness Scores (RS) are obtained by an *iterated Random Coefficient Regression* (RCR). The basic econometrics of this model can be found in Wooldridge (2002, pp. 638-642). The calculation of RS follows this simple protocol:

- 1. Define y, the outcome (or response) variable.
- 2. Define a set of Q factors thought of as affecting y, and indicate the generic factor with x_j .
- 3. Define a RCR model linking y to the various x_j , and extract a unit-specific responsiveness effect of y to the all set of factors x_j , with j=1, ..., Q.
- 4. For the generic unit i and factor j, indicate this effect as b_{ij} and collect all of them in a matrix **B**. Finally, aggregate

by unit (row) and by factor (column) the b_{ij} getting synthetic unit and factor responsiveness measures.

Analytically, an RS is defined as the "partial effect" of an RCR (Wooldridge, 1997; 2002; 2005). Define a

RCR model of this kind:

$$\begin{cases} y_i = a_{ij} + b_{ij} x_{ij} + e_i \\ a_{ij} = \gamma_0 + \mathbf{x}_{i,-j} \gamma + u_{ij} \\ b_{ij} = \delta_0 + \mathbf{x}_{i,-j} \delta + v_{ij} \end{cases}$$

where e_i , u_{ij} and v_{ij} are error terms with $E(e_i | x_{ij}) = E(u_i | x_{ij}) = E(v_i | x_{ij}) = 0$.

According to this model, we can define the regression line as:

$$E(y_{i} | x_{ij}, a_{ij}, b_{ij}) = a_{ij} + b_{ij}x_{ij}$$

From this, we define the **RS** of of x_{ij} on y_i as the *derivative* of y_i respect to x_{ij} , that is:

$$\frac{\partial}{\partial x_{ij}} \left[E(y_i \mid x_{ij}, a_{ij}, b_{ij}) \right] = b_{ij}$$

where: b_{ij} is called the *partial effect* of x_{ij} on y_i .

We can repeat the same procedure for each x_{ij} (j=1, ..., Q) so that it is possible eventually to

define, for each unit i = 1 ..., N and factor j=1, ..., Q, the $N \ge Q$ matrix **B** of "partial effects" as follows:

$$\mathbf{B} = \begin{pmatrix} b_{11} & \dots & b_{1Q} \\ \vdots & b_{ij} & \vdots \\ b_{N1} & \dots & b_{NQ} \end{pmatrix}$$

If all variables are standardized, partial effects are **beta coefficients** so that they are independent of the unit of measurement and can be compared and summed.

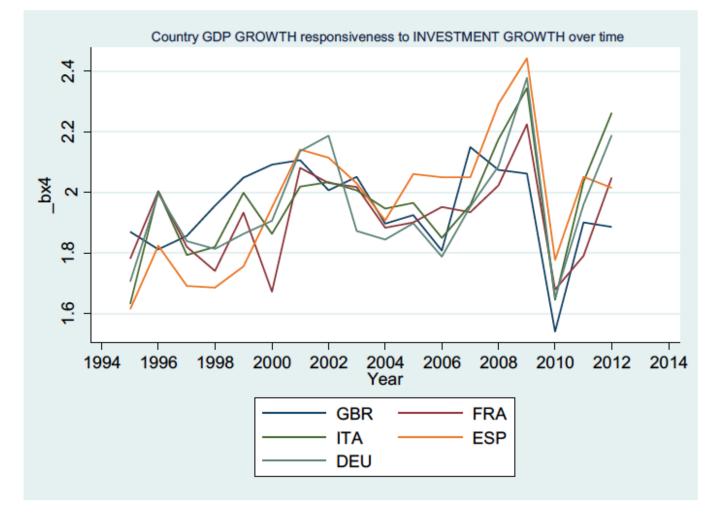
Once matrix **B** is known, we can define for each unit *i* the Total Unit Responsiveness (TUR) and

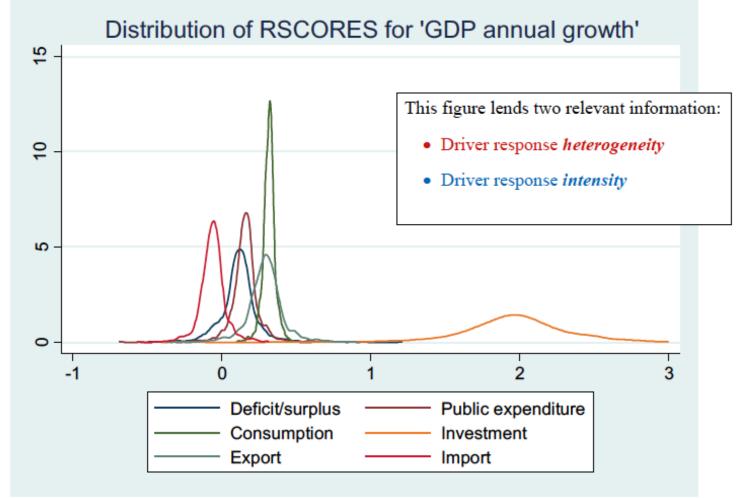
the Mean Unit Responsiveness (MUR) as:

$$\text{TUR}_{i} = \sum_{j=1}^{Q} b_{ij} \quad \text{and} \quad \text{MUR}_{i} = \frac{1}{Q} \sum_{j=1}^{Q} b_{ij}$$

and for each factor j, the Total (or Mean) Responsiveness of y to factor j's unit change (TFR and

MFR) as:


$$\text{TFR}_{j} = \sum_{i=1}^{N} b_{ij} \text{ and } \text{MFR}_{j} = \frac{1}{N} \sum_{i=1}^{N} b_{ij}$$



Consiglio Nazionale delle Ricerche IRCEES IRCEES ISTITUTO & RICERCA sulla CRESIOTA ECONOMICA SOSTENBILE RESEARCH INSTITUTE en SUSTAINABLE ECONOMIC OPONITH

Unit responsiveness rank

set more off
sort _bx4
list countryname year _bx4 if _bx4>=3 & _bx4!=.

+			+
	countryname	year	_bx4
1864.	Belarus	1992	3.230418
1865.	Azerbaijan	1999	3.232215
1866.	Mali	2006	3.271389
1867.	Congo, Rep.	2008	3.311152
1868.	Seychelles	2008	3.314989
1			
1869.	Nigeria	2012	3.334117
1870.	Macao SAR, China	2009	3.413818
1871.	Trinidad and Tobago	2007	3.46852
1872.	Indonesia	1999	3.514539
1873.	Argentina	2002	3.515946
1			
1874.	Bulgaria	1991	3.667125
1875.	Iran, Islamic Rep.	1994	3.690769
1876.	Bulgaria	1990	4.40006
1877.	Nigeria	2004	5.845391
+			+

Conclusions

rscore can be useful to detect both *factor importance* and *factor*

heterogeneous response

rscore allows to *fixed-effect* estimation to mitigate potential factor *endogeneity*

rscore allows to rank both factors and observations, thus providing more detailed idiosyncratic information